13x^2+1170x-234000=0

Simple and best practice solution for 13x^2+1170x-234000=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13x^2+1170x-234000=0 equation:



13x^2+1170x-234000=0
a = 13; b = 1170; c = -234000;
Δ = b2-4ac
Δ = 11702-4·13·(-234000)
Δ = 13536900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13536900}=\sqrt{152100*89}=\sqrt{152100}*\sqrt{89}=390\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1170)-390\sqrt{89}}{2*13}=\frac{-1170-390\sqrt{89}}{26} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1170)+390\sqrt{89}}{2*13}=\frac{-1170+390\sqrt{89}}{26} $

See similar equations:

| g÷7=4 | | q/4+ 9= 11 | | (x+7)​2​​−11=0 | | 5g+80=100g-13 | | 3-5(2m-10)=2/3m+10 | | (2x-1)(x+1)=4 | | (2x-1)(x+1=4 | | C=6(y+3) | | 55w=385 | | 4a+5=2+2.35a | | 15f-6=9f+18 | | 55w=1,050 | | 8x+2x+6=86 | | -3/8+m=-1/5 | | 10=0+a•5 | | 55f=1050 | | Z=2x+-5 | | 2x-11=4x+23 | | r=22/2.25 | | 3y+2y+3=96 | | 3=-12+5r | | 5x-19=109 | | -10=(x+8)÷-7 | | x/3+x=252 | | -10+7z=-1+7z | | 2x2-16x+14=0 | | -7x+5+7(X+1)=5X-7 | | Z=2×+-5y | | -22=2(x=10) | | y/6+7=6 | | |x+3|=11 | | 6+2(q-5)=5q-256 |

Equations solver categories